AISI 01 Cold work tool steel

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose.

General

AISI O1 general purpose oil-hardening tool steel is a versatile manganese-chromium-tungsten steel suitable for a wide variety of cold-work applications.

Its main characteristics include:

- Good machinability
- Good dimensional stability in hardening
- A good combination of high surface hardness and toughness after hardening and tempering.

These characteristics combine to give a steel suitable for the manufacture of tooling with good toollife and production economy.

AISI O1 can be supplied in various finishes including hot-rolled, pre-machined, fine-machined and precision ground. It is also available in the form of hollow bar.

Typical	С	Mn	Cr	W
analysis %	0.95	1.1	0.6	0.6
Standard specification	AISI O1, WNr. 1.2510			
Delivery condition	Soft annealed approx. 190 HB			ΗB
Color code	Yellow			

Properties

PHYSICAL DATA

Hardened and tempered to 62 HRC. Data at ambient temperature and elevated temperature.

Temperature	68°F (20°C)	375°F (200°C)	750°F (400°C)
Density Ibs/in ³ kg/m ³	0.282 7 800	0.280 7 750	0.278 7 700
Modulus of elasticity psi N/mm ²	28 x 10 ⁶ 190 000	27 x 10 ⁶ 185 000	25 x 10 ⁶ 170 000
Coefficient of thermal per °F from 68°F per °C from 20°C	exp. 	6.5 x 10 ⁻⁶ 11.7 x 10 ⁻⁶	6.3 x 10 ⁻⁶ 11.4 x 10 ⁻⁶
Thermal conductivity Btu in/ft² h °F W/m °C	222 32	229 33	236 34
Specific heat Btu/lb. °F J/kg C	0.11 460		

COMPRESSIVE STRENGTH

The figures are to be considered approximate.

	Compressive yield strenght, Rc0.2		
Hardness	N/mm ²	ksi	
62 HRC 60 HRC 55 HRC 50 HRC	2200 2150 1800 1350	319 312 261 196	

Applications

Tools for	Material thickness	HRC	
Cutting Blanking, punching piercing, cropping, shearing, trimming clipping	up to 1/8" (3 mm) 1/8–1/4" (3–6 mm) 1/4–13/32" (6–10 mm)	60–62 56–60 54–56	
Short cold shears		54–60	
Clipping and trimming tools Hot for forgings Cold			
Forming Bending, raising, drawing, rim rolling, spinning and flow forming			
Small coining dies			
Gauges, measuring tools Turning centres Guide bushes, ejector pins, high duty, small/medium drills and taps Small gear wheels, pistons, nozzles, cams			

Clipping and edging tool in AISI O1 tool steel to clip and form edge of 0.036" (0.914 mm) thick stainless steel container approx. $10" \ge 6" \ge 8"$ (254 $\ge 152 \ge 203$ mm).

Heat treatment

SOFT ANNEALING

Protect the steel and heat through to 1435° F (780° C). Then cool in the furnace at 27° F (15° C) per hour to 1200° F (650° C), then freely in air.

STRESS-RELIEVING

After rough machining the tool should be heated through to $1200 \,^{\circ}\text{F}$ (650° C), holding time 2 hours. Cool slowly to 930°F (500° C) then freely in air.

HARDENING

Preheating temperature: $1110-1290^{\circ}$ F (600-700° C) Austenitizing temperature: $1450-1560^{\circ}$ F (790- 850° C)

Tempe °F	erature C	Soaking* time minutes	Hardness before tempering
1470	800	30	approx. 65 HRC
1520	825	20	approx. 65 HRC
1560	850	15	approx. 63 HRC

* Soaking time = time at austenitizing temperature after the tool is fully heated through.

Protect the part against decarburization and oxidation during hardening.

QUENCHING MEDIA

• Oil

• Martempering bath. Temperature 360–435°F (180–225°C), then cooling in air.

Note: Temper the tool as soon as its temperature reaches $120-160^{\circ}$ F (50-70° C).

Hardness as a function of hardening temperature.

TEMPERING

Choose the tempering temperature according to the hardness required by reference to the tempering graph. Temper twice with intermediate cooling to room temperature. Lowest tempering temperature 360°F (180°C). Holding time at temperature minimum 2 hours.

Tempering graph

MARTEMPERING

Tools at austenitizing temperature are immersed in the martempering bath for the time indicated, then cooled in air to not lower than 210°F (100°C). Temper immediately as with oil-quenching.

Auster tempe °F	nitizing erature °C	Tem martem °F	ip. of ip. bath o°C	Holding time in martemp. bath, minutes	Surface hardness prior to tempering (obtained by martempering)
1520	825	435	225	max. 5	64±2 HRC
1520	825	390	200	max. 10	63±2 HRC
1520	825	355	180	max. 20	62±2 HRC
1560	850	435	225	max. 10	62±2 HRC

DIMENSIONAL CHANGES DURING HARDENING

Sample plate, 4" x 4" x 1" (100 x	x 100 x 25 mm).
-----------------------------------	-----------------

		Width %	Length %	Thickness %
Oil hardening fror 1530°F (830°C)	n min. max.	+0.03 +0.10	+0.04 +0.10	_ +0.02
Martempering fro 1530°F (830°C)	m min. max.	+0.04 +0.12	+0.06 +0.12	_ +0.02

DIMENSIONAL CHANGES DURING TEMPERING

Note: The dimensional changes on hardening and tempering should be added together. Recommended allowance 0.25%.

SUB-ZERO TREATMENT AND AGING

Pieces requiring maximum dimensional stability should be sub-zero treated and/or artificially aged, as volume changes may occur in the course of time. This applies, for example, to measuring tools like gauges and certain structural components.

Sub-zero treatment

Immediately after quenching the piece should be sub-zero treated to between -95 to -110° F (-70 and -80° C), soaking time 3–4 hours, followed by tempering or aging. Sub-zero treatment will give a hardness increase of 1–3 HRC. Avoid intricate shapes as there will be risk of cracking.

Aging

Tempering after quenching is replaced by aging at 230–285°F (110–140°C). Holding time 25–100 hours.

Machining recommendations

The following tables give machining data for *AISI O1* in soft annealed condition. Hardness 190 HB. The data are to be considered as guiding values, which must be adapted to existing local conditions.

TURNING

Cutting data parameters	Turning with carbide Rough turning Fine turning		Turning with high speed steel Fine turning
Cutting speed (v _c) f.p.m. m/min	460–560 140–170	560–730 170–220	65 20
Feed (f) i.p.r. mm/r	0.012–0.023 0.3–0.6	-0.01 -0.3	-0.01 -0.3
Depth of cut (a _p) inch mm	0.08–0.24 2–6	-0.08 -2	-0.08 -2
Carbide designation US ISO	C6–C5 P20–P30 Coated carbide	C7 P10 Coated carbide or cermet	

MILLING

Face and square shoulder milling

Cutting data	Milling with carbide		Milling with high speed steel
parameters	Rough milling	Fine milling	Fine milling
Cutting speed (v _c) f.p.m. m/min	530–660 160–200	660–790 200–240	80 25
Feed (f _z) in/tooth mm/tooth	0.008–0.016 0.2–0.4	0.004–0.008 0.10–0.20	0.004 0.1
Depth of cut (a _p) inch mm	0.08–0.2 2–5	-0.08 -2	-0.08 -2
Carbide designation US ISO	C6–C5 P20–P40 Coated carbide	C7–C6 P10–P20 Coated carbide or cermet	

	Type of milling		
Cutting data parameters	Solid carbide	Carbide indexable insert	High speed steel
Cutting speed (v _c) f.p.m. m/min	165 50	400–560 120–170	80 ¹⁾ 25 ¹⁾
Feed (f _z) in/tooth mm/tooth	0.001-0.008 ²⁾ 0.03-0.2 ²⁾	$\begin{array}{c} 0.003 – 0.008^{2)} \\ 0.08 – 0.2^{2)} \end{array}$	$\begin{array}{c} 0.002 - 0.014^{2)} \\ 0.05 - 0.35^{2)} \end{array}$
Carbide designation US ISO	C2 K20, P40	C6–C5 P20–P30	

End milling

¹⁾ For coated end mills $v_c \approx 115$ f.p.m. (35 m/min.)

²⁾ Depending on radial depth of cut and cutter diameter.

DRILLING High speed steel twist drill Drill diameter Cutting speed (v_c) Feed (f) inch f.p.m. m/min mm/r mm i.p.r. -3/16 -5 50' 16* 0.003-0.008 0.08-0.20 3/16-3/8 5-10 50* 16* 0.008-0.012 0.20-0.30 50* 16* 0.012-0.014 0.30-0.35 3/8-5/8 10 - 1550* 5/8-3/4 15-20 16* 0.014-0.016 0.35-0.40

*) For coated HSS drills vc ~70 f.p.m. (22 m/min.)

	Type of drill			
Cutting data parameters	Indexable insert	Solid carbide	Brazed carbide ¹⁾	
Cutting speed (v _c) f.p.m. m/min	400–530 120–160	200 60	180 55	
Feed (f) i.p.r. mm/r	0.002-0.01 ²⁾ 0.05-0.25 ²⁾	0.004-0.01 ²⁾ 0.10-0.25 ²⁾	0.006-0.01 ²⁾ 0.15-0.25 ²⁾	

Carbide drill

¹⁾ Drills with internal cooling channels and brazed carbide tip.

²⁾ Depending on drill diameter.

GRINDING

General grinding wheel recommendation for *AISI O1* is given below. More information can be found in the Uddeholm publication "Grinding of Tool Steel".

	Wheel recommendation	
Type of grinding	Soft annealed condition	Hardened condition
Face grinding straight wheel	A 46 H V	A 46 G V
Face grinding segments	A 24 G V	A 36 G V
Cylindrical grinding	A 46 L V	A 60 J V
Internal grinding	A 46 J V	A 60 I V
Profile grinding	A 100 L V	A 120 J V

Electrical-discharge machining

If spark-erosion, EDM, is performed in the hardened and tempered condition, the tool should then be given an additional temper at approx. 50°F (25°C) below the previous tempering temperature.

Welding

Good results when welding tool steel can be achieved if proper precautions are taken during welding (elevated working temperature, joint preparation, choice of consumables and welding procedure). If the tool is to be polished or photoetched, it is necessary to work with an electrode type of matching composition.

Welding method	Working temperature	Consumables	Hardness after welding
MMA (SMAW)	390–480°F 200–250°C	AWS E312 UTP 67S	300 HB 55–58 HRC
TIG	390–480°F 200–250°C	AWS ER312 UTPA 67S UTPA 73G2	300 HB 55–58 HRC 53–56 HRC

Blanking tool made from fine-machined AISI O1 tool steel.

Relative comparison of Uddeholm cold work tool steel

Further information

Please contact your local Uddeholm office for further information on the selection, heat treatment, application and availability of Uddeholm tool steels.